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APPENDIX: OPTIMIZATION TO JCSFE MODEL OBJECTIVE
FUNCTION

Due to the page limit, the optimization to the JCSFE
model objective function is provided in this supplementary
material.

� The Yu step. Here we provide the detailed derivation
to objective function defined on variable yi|ni=l+1. By denoting
mi , xT

i W, i = l + 1, l + 2, · · · , l + u, we have

min
yi≥0, yi1c=1

∥yi −mi∥22. (1)

The corresponding Lagrangian function is

L(yi, η, δ) = ∥yi −mi∥22 − η(yi1c − 1)− yiδT , (2)

where η and δ ∈ R1×c are two Lagrange multipliers re-
spectively in scalar and vector forms. Below we show how
both the Lagrange multipliers are determined. Suppose that the
optimal solution to problem (1) is yi∗, and the corresponding
Lagrange multipliers are η∗ and δ∗. Then, according to the
Karush-Kuhn-Tucker (KKT) condition, we have the following
equations and inequalities

∀j, y∗ij −mij − η∗ − δ∗j = 0, (3)
∀j, y∗ij ≥ 0, (4)
∀j, δ∗j ≥ 0, (5)
∀j, y∗ijβ

∗
j = 0, (6)

where y∗ij is the j-th element of vector yi∗. The vector form
of (3) is

yi∗ −mi − η∗1T
c − δ∗ = 0. (7)

Since we have the constraint yi1c = 1, the above equation
can be reformulated into

η∗ =
1−mi1c − δ∗1c

c
. (8)

By replacing η∗ in (7) with (8), we have

yi∗ = mi − mi1c

c
1T
c +

1

c
1T
c − δ∗1c

c
1T
c + δ∗. (9)

By denoting δ̄∗ = δ∗1c

c and q = mi − mi1c

c 1T
c + 1

c1
T
c , we

can rewrite the above equation as

yi∗ = q+ δ∗ − δ̄∗1T
c . (10)

Accordingly, for each j = 1, 2, · · · , c, we have

y∗ij = qj + δ∗j − δ̄∗. (11)

Considering equations (4), (5), (6), and (11) together, we know
that qj+δ∗j − δ̄∗ = (qj− δ̄∗)+, where (f(·))+ = max(f(·), 0).
Therefore, we have

y∗ij = (qj − δ̄∗)+. (12)

Till now, if δ̄∗ could be determined, y∗
i will be accordingly

determined by (12). From (11), we have δ∗j = y∗ij + δ̄∗ − qj
such that δ∗j = (δ̄∗ − qj)+. Therefore, δ̄∗ can be calculated as

δ̄∗ =
1

c

c∑
j=1

(δ̄∗ − qj)+. (13)

According to the constraint yi1c = 1 and (12), we define the
following function

f(δ̄) =
c∑

j=1

(qj − β̄)+ − 1, (14)

and the optimal δ̄∗ should satisfy f(δ̄∗) = 0. When (14) equals
to zero, the optimal δ̄∗ can be obtained via Newton method,
namely,

δ̄(k+1) = δ̄(k) − f(β̄(k))

f ′(β̄(k))
. (15)

It is obvious that f(δ̄) is a piecewise linear and monotonically
increasing function. When qj ≥ δ̄, we have f(δ̄) =

∑c
j=1 qj−

δ̄ − 1 and f ′(δ̄) = −1. When qj ≤ δ̄, we have f(δ̄) = −1
and its derivative f ′(δ̄) = 0. As a result, we obtain f ′(δ̄) by
counting the number of positive values in (qj − δ̄)|cj=1.

� The W step. First, the convex optimization problem
in the general APG method is defined as

min
W∈H

F (W) = f(W) + g(W), (16)

where H indicates the real Hilbert space. f(W) is convex and
smooth, and g(W) is convex but typically non-smooth. f(W)
further satisfies the Lipschitz continuous condition; that is

∥∇f(W1)−∇f(W2)∥2 ≤ Lf∥∆W∥2, (17)

where Lf is termed as the Lipschitz constant and ∆W =
W1 − W2. Below we propose to minimize the separable
quadratic approximation sequence of f(W) by the proximal
gradient algorithm rather than minimizing it directly, which is
expressed as

Q(W,W(t)) =f(W(t)) + ⟨∇f(W(t)),W −W(t)⟩

+
Lf

2
∥W −W(t)∥22 + g(W).

(18)
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By denoting G(t) = W(t) − 1
Lf

∇f(W(t)), we rewrite the
above expression as

Q(W,W(t)) = g(W) +
Lf

2
∥W −G(t)∥22. (19)

According to the JCSFE objective function and equation (16),
we have

f(W) = ∥XTW −Y∥22 + γTr(FTLF) + βTr(WTAW),
(20)

and
g(W) = α∥W∥1. (21)

By combining equations (19), (20) and (21) together, we obtain
the objective function in terms of variable W as

W = argmin
W

1

2
∥W −G(t)∥22 +

α

Lf
∥W∥1. (22)

According to the existing studies [1], [2], we set W(t) =

W(t) + b(t−1)−1
b(t)

(W(t) − W(t−1)) and then the convergence
speed of the proximal gradient method can be accelerated to
O(t−2), where sequence b(t) satisfies (bt)2 − bt 6 (b(t−1))2

and W(t) is the updated result at t-th iteration. It is obvious
that (22) is an ℓ1-norm regularized problem which can be
solved by the following soft-shrinkage operator

Sε[x] =

 x− ε, if x > ε,
x+ ε, if x < −ε,
0, otherwise.

(23)

The ε above is usually a small positive value. This operator can
be extended to vectors and matrices by applying it element-
wisely. Then, by setting ε = α

Lf
, we can obtain W(t+1) by

solving

Sε[G
(t)] = argmin

W

1

2
∥W −G(t)∥22 + ε∥W∥1. (24)

For ∇f(W), it can be obtained by taking the derivative of
equation (20) with respect to W. That is

∇f(W) = XXTW −XY + γXLXTW + βAW. (25)

When W1 and W2 are given, we have

∥∇f(W1)−∇f(W2)∥22
=∥XXT∆W + γXLXT∆W + βA∆W∥22
≤(∥XXT∆W∥+ ∥γXLXT∆W∥+ ∥βA∆W∥)2

=∥XXT∆W∥2 + ∥γXLXT∆W∥2 + ∥βA∆W∥2

+ 2∥XXT∆W∥ · ∥γXLXT∆W∥
+ 2∥γXLXT∆W∥ · ∥βA∆W∥
+ 2∥XXT∆W∥ · ∥βA∆W∥

≤3(∥XXT∆W∥2 + ∥γXLXT∆W∥2 + ∥βA∆W∥2)
≤3(∥XXT ∥2∥∆W∥2 + ∥γXLXT ∥2∥∆W∥2 + ∥βA∥2∥∆W∥2)
=3(∥XXT ∥2 + ∥γXLXT ∥2 + ∥βA∥2)∥∆W∥2

(26)
By comparing inequalities (17) and (26), the Lipschitz constant
Lf can be set as

Lf =

√
3(∥XXT ∥22 + ∥γXLXT ∥22 + ∥βA∥22). (27)

When W is given, then A is fixed and further Lf is a constant
value.
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