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APPENDIX: OPTIMIZATION TO JCSFE MODEL OBJECTIVE
FUNCTION

Due to the page limit, the optimization to the JCSFE
model objective function is provided in this supplementary
material.

B The Y, step. Here we provide the detailed derivation
to objective function defined on variable y*|”_, 41- By denoting
m' = x'W,i=1+1,1+2,---,1+u, we have

min [y’ —m'[3. )
y*20, y'1.=1
The corresponding Lagrangian function is
L(y'.n,0) = |ly’' —m'[] - n(y'Ll. — 1) —y'd", (2

where 7 and § € R'*¢ are two Lagrange multipliers re-
spectively in scalar and vector forms. Below we show how
both the Lagrange multipliers are determined. Suppose that the
optimal solution to problem (1) is y**, and the corresponding
Lagrange multipliers are n* and 6*. Then, according to the
Karush-Kuhn-Tucker (KKT) condition, we have the following
equations and inequalities

Vi, y; =0, “)
Vi, 6% >0, )

where y;; is the j-th element of vector y**. The vector form
of (3) is
y* —m' —n 1l —§* =0. (7)

Since we have the constraint y’1. = 1, the above equation
can be reformulated into

_1-m'l, —6"1,

n (8)
c
By replacing n* in (7) with (8), we have
, . i1 1 51,
y* =m - ey 9T 22T L (9)
c c
By denoting 6* = &% and q = m’ — ®Le1” 4 117 we
can rewrite the above equation as
y*=q+6"—01r. (10)
Accordingly, for each j = 1,2,--- ¢, we have
Yy =q + 05 — 0" (11)

Considering eguations (42, (5), (6), and (11) together, we know
that ¢j +07 —0* = (q; —0%), where (f(-))+ = max(f(-),0).
Therefore, we have

yi; = (g5 —0")4. (12)

Till now, if 6* could be determined, y; will be accordingly
determined by (12). From (11), we have 5;-‘ =y + 0" — g
such that 07 = (6" — g;)+. Therefore, 6" can be calculated as
N 1 ° Tx
S S

C
j=1

13)

According to the constraint y*1, = 1 and (12), we define the
following function
FO) =Y (a—B)+ -1,
j=1
and the optimal 6* should satisfy f(5*) = 0. When (14) equals
to zero, the optimal J* can be obtained via Newton method,

namely, ~
Sk+1) _ 5(k) _ f(@(k)) _
f1(B*)
It is obvious that f(4) is a piecewise linear and monotonically
increasing function. When ¢; > 4, we have f(8) = ijl q;—
§ —1and f'(§) = —1. When ¢; < 4, we have f(6) = —1
and its derivative f’(§) = 0. As a result, we obtain f’(§) by
counting the number of positive values in (g; — 5)|§:1.
B The W step. First, the convex optimization problem
in the general APG method is defined as

in F(W) = (W) +g(W),

(14)

5)

(16)

where H indicates the real Hilbert space. f(W) is convex and
smooth, and g(W) is convex but typically non-smooth. f(W)
further satisfies the Lipschitz continuous condition; that is

IVF(W1) = VF(Wa)ll2 < Ly [ AW]|2, (17)

where Ly is termed as the Lipschitz constant and AW =
W; — W,. Below we propose to minimize the separable
quadratic approximation sequence of f(W) by the proximal
gradient algorithm rather than minimizing it directly, which is
expressed as

QW, W) = (W) + (VW) W - W)
18)
LW o wog Wy,
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By denoting G = W) — LV f(W®), we rewrite the
f
above expression as

L
QIW, W) =g(W) + W —GW5. 9)

According to the JCSFE objective function and equation (16),
we have

F(W) = |[XTW — Y|2 + 1Tr(FTLF) 4 STr(WT AW),
(20)
and
9(W) = o|W].
By combining equations (19), (20) and (21) together, we obtain
the objective function in terms of variable W as

21

1
W = argmin - [W — GO + L%nwnl. 22)

According to the existing studies [1], [2], we set WO =
N AREE b(t;(lt))—l (W® — W(¢=1) and then the convergence
speed of the proximal gradient method can be accelerated to
O(t=2), where sequence b() satisfies (b*)? — bt < (b(t~1))?
and W® is the updated result at ¢-th iteration. It is obvious
that (22) is an ¢;-norm regularized problem which can be
solved by the following soft-shrinkage operator

z—eg, ifxz>e,
Szl =4 z+e, ifz<—¢ (23)
0, otherwise.

The € above is usually a small positive value. This operator can
be extended to vectors and matrices by applying it element-
wisely. Then, by setting ¢ = L%, we can obtain W(+1) by
solving '

1
Se[GY] = argmin o |[W - GUF + e[ W 24)

For Vf(W), it can be obtained by taking the derivative of
equation (20) with respect to W. That is

V(W) =XXTW — XY +yXLX"W + SAW.
When W; and Wy, are given, we have

IVF(W1) = VF(Wa)ll3
=[|XXTAW +yXLXTAW + BAAW||2
<(IXXTAW|| + [7XLX"AW|| + [ BAAW]|)
=[|XX"AW|* + [y XLXTAW|* + | BAAW |2

+ 2 XXTAW|| - [7XLXTAW||

+ 2V XLX AW - |[BAAW||

+2|XXTAW| - [|[BAAW|
SB(XXTAW? + [7XLXTAW|* + [ BAAW|?)

(25)
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S3(IXXT AW |? + [/ XLXT P AW + [ A2 [AW]?)

=3(1XXT|? + [y XLXT|? + [ BA[%) AW |2

(26)
By comparing inequalities (17) and (26), the Lipschitz constant
Ly can be set as

Ly= \/3(HXXTH§ + [V XLXT[3 + [ BA3)-

When W is given, then A is fixed and further L is a constant
value.
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